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We model the optimal foraging strategies for 2 nectarivore species, differing in the length of their proboscis, that exploit the
nectar provided by 2 types of flowers, differing in the depths of their corollas. When like flowers appear in clumps, nectarivores
must decide whether to forage at a patch of deep or shallow flowers. If nectarivores forage optimally, at least one flower type will
be used by a single nectarivore species. Long-tongued foragers will normally visit deep flowers and short-tongued foragers shallow
flowers, although extreme asymmetries in metabolic costs may lead to the opposite arrangement. When deep and shallow flowers
are randomly interspersed, nectarivores must decide, on encounter with a flower, whether to collect its nectar or continue
searching. At low nectarivore densities, the optimal strategy involves exploiting every encountered flower; however, as nectarivore
densities increase and resources become scarce, long-tongued individuals should start concentrating on deep flowers and short-
tongued individuals on shallow flowers. Therefore, regardless of the spatial distribution of flowers, corolla depth can determine
which nectarivore species exploit the nectar from each flower type in a given community. It follows that corolla elongation
can evolve as a means to keep nectar thieves at bay if short-tongued visitors are less efficient pollinators than long-tongued
visitors. Key words: competition, habitat selection, nectar concealment. [Behav Ecol 17:905–910 (2006)]

When coexisting individuals compete for an ensemble of
available resources, variability in their ability to exploit

the different resources normally translates, through the
operation of optimal foraging, into resource partitioning
(Rosenzweig 1981, 1991). Resource partitioning has been de-
scribed in natural communities of nectarivores (Heinrich
1976a; Pyke 1982; Harder 1985; Graham and Jones 1996;
Irwin 2000; Stang et al. 2006), and the conditions leading to
it have been modeled when nectarivores differ in the relative
efficiency with which they can exploit co-occurring flower
types (Possingham 1992; Rodrı́guez-Gironés 2006).

Possingham (1992) and Rodrı́guez-Gironés (2006) consider
communities where all visitors can extract the same amount of
nectar from flowers but differ in the time they require to do
so. In many communities, nectarivores differ in the length of
their tongues or proboscis and plants in the depth of their
flowers’ corolla tubes or spurs, so that flower visitors differ in
the amount of nectar they can extract from flowers. In this
paper, we consider the conditions under which optimal forag-
ing strategies lead to an association between a nectarivore’s
proboscis length and the corolla depth of the flowers it visits.
In practice, long-tongued visitors can extract more nectar
than short-tongued visitors from deep corolla tubes and need
less time to do so (Inouye 1980). Nevertheless, to study the
extent to which nectar availability per se can lead to resource
partitioning, we assume that there is no difference in the
amount of time that the different flower visitors need to ex-
ploit flowers. (Taking this difference into account would
strengthen resource partition.)

Previous models of resource partitioning in nectarivores
(Possingham 1992; Rodrı́guez-Gironés 2006) assume that in-
dividuals choose the type of flowers they search. This makes

sense when the distribution of flowers is patchy, so that indi-
viduals essentially decide where to forage, but it is unclear to
what extent the results generalize to the situation where nec-
tarivores come across a sequence of flowers and must decide,
for each flower they encounter, whether to visit it or to con-
tinue searching. For this reason, we develop 2 foraging mod-
els, a patch model and a prey model, to study the effect of the
spatial distribution of resources on the expected patterns of
resource partitioning.

GENERAL MODEL

Both models consider a community with 2 nectarivore species
and 2 flower types. Flowers differ in the depth of the structure
containing nectar (corolla tube), and nectarivores differ in
the depth from which they can extract the nectar column
(tongue length). Nectarivorous species will be referred to as
‘‘bees,’’ although the results apply equally to any other taxa.
Flowers are thus divided in shallow and deep flowers, and bees
are divided in short- and long-tongued species. The number
of i flowers (i ¼ 1 for shallow or 2 for deep flowers) is Fi, and
the number of j bees (j ¼ X for short- or Y for long-tongued
bees) is Bj. Table 1 lists all variables used.

The corolla tube of i flowers is ci mm deep, and the tongue
of j bees is tJ mm long. We assume that c1 � tX � tY � c2. On
arrival at a flower, j bees consume any nectar within a distance
tj of the corolla tube opening.

The rate at which flowers secret nectar depends on factors
such as the age of the flower and the time of day (McDade and
Weeks 2004). It can decrease as time elapses (Cruden et al.
1983; Castellanos et al. 2002) or remain constant and cease
abruptly (Cruden et al. 1983). In our models, we assume that
the nectar column in i flowers raises at a constant rate ri until
the column is completely full. This is the most conservative
assumption, in the sense that it is the least likely to induce
resource partitioning.

Depending on the spatial distribution of deep and shallow
flowers, bees will encounter uninterrupted bouts of same-type

Address correspondence to M.A. Rodrı́guez-Gironés. E-mail:
rgirones@eeza.csic.es.

Received 20 February 2006; revised 2 June 2006; accepted 12 June
2006.

Behavioral Ecology
doi:10.1093/beheco/arl024

Advance Access publication 31 July 2006

� The Author 2006. Published by Oxford University Press on behalf of
the International Society for Behavioral Ecology. All rights reserved.
For permissions, please e-mail: journals.permissions@oxfordjournals.org



flowers, random sequences of flowers of each type, or some-
thing in between. For simplicity, we consider only the 2 ex-
tremes of this continuum, and we ignore the possibility that
flowers have a tendency to alternate.

In the models considered below, we will assume that bees
visit flowers at random and that the duration of the intervals
between consecutive visits by any 2 j bees to a randomly cho-
sen i flower follows an exponential distribution with parame-
ter mij, which depends on the foraging behavior of the 2 bee
species. Given these assumptions, it is possible to determine
(Appendix) the average nectar volume that a j bee will con-
sume on arrival at an i flower, Iij:

I1X ¼ I1Y ¼ r1

m1X 1 m1Y
½1 � e�ðm1X 1m1Y Þc1=r1 �; ð1Þ

I2X ¼ r2

m2X 1 m2Y
e�m2Y ðtY �tX Þ=r2 ½1 � e�ðm2X 1m2Y ÞtX =r2 �; ð2Þ

I2Y ¼ r2

m2Y ðm2X 1 m2Y Þ
fm2X ½1 � e�m2Y ðtY �tX Þ=r2 �

1 m2Y ½1 � e�ðm2X tX 1m2Y tY Þ=r2 �g:
ð3Þ

The corresponding energy intake is obtained by multiplying Iij

and the energy content per unit length of the nectar column
qj. We denote by k

f
j the metabolic rate of j bees while flying

and by k
p
ij their metabolic rate while foraging (probing) at i

flowers. To simplify the algebra, it will be convenient to define
the net gain between consuming the nectar of an i flower and
ignoring it,

eij ¼ qi Iij � ðkp
ij � k

f
j Þhij ; ð4Þ

where hij is the time that j bees require to extract the nectar
from an i flower (Stephens and Krebs 1986). We further de-
fine the profitability of an i flower to a j visitor as eij/hij.

FLOWERS WITH CLUMPED DISTRIBUTION
(PATCH MODEL)

First, consider the case in which the distribution of each plant
species is clumped and bees exploiting a patch encounter
flowers of a single type. Bees must decide whether to forage
at patches of shallow or deep flowers. Let pij be the fraction of
j bees foraging at i flowers. Within patches, flowers are visited
at random, and the duration of the intervals between consec-

utive visits by j bees on an individual i flower follow an expo-
nential distribution with parameter mij,

mij ¼
Bjkij pij

Fið11 kij hijÞ
; ð5Þ

where kij is the rate at which j bees encounter flowers while
searching in a patch of i-type flowers.

Except for the difference in expected intake rate (Equa-
tions 1–3 of this article vs. Equations 2 and 7 in Possingham
[1992]), this model is equivalent to that proposed by
Possingham (1992). Following the logic of the ideal free dis-
tribution (Fretwell and Lucas 1970), individual bees forage at
the flower type on which they maximize their expected payoff
(Dreisig 1995; Robertson and Macnair 1995; Ohashi and
Yahara 2002). If j bees exploit both shallow and deep flowers,
their expected payoff must be the same at both flower types:

E1j ¼ E2j ; ð6Þ

where Eij is the expected payoff of j nectarivores exploiting
i flowers,

Eij ¼
kij eij

11 kij hij
� k

f
j : ð7Þ

One can rewrite Equation 6 as a function of the pij. (All other
variables describe the ecological scenario and are indepen-
dent of the foraging behavior of bees.) Consider first the case
of the short-tongued bees (j ¼ X). If we consider p1Y as given
(and hence p2Y too because p1Z 1 p2Z ¼ 1), we can solve for
p1X combining Equations 6 and 7. This cannot be done ana-
lytically (because of the exponentials in Equations 1–3), but
Equation 6 and the constraint p1j 1 p2j ¼ 1 define an implicit
function of the form p1X(p1Y). This function is the X isoline: it
defines the set of points, on the (p1X, p1Y) plane, for which X
bees obtain the same intake rate at shallow and deep flowers.
In a like manner, by swapping indexes, we can define the Y
isoline as the set of points where Y bees obtain the same intake
rate at shallow and deep flowers. When j bees forage opti-
mally, a community at ecological equilibrium must be on
the j isoline or have pij 2 f0, 1g (Possingham 1992).

Solution types

In Possingham’s model, both flower types are always visited by
some nectarivores because flowers accumulate an infinite
amount of nectar if they remain unvisited (Possingham
1992). When, as in the present model, flowers can only hold
a finite volume of nectar, it is possible that a flower type is never
visited. Let êij be the maximum (modified) gain that a j bee can
obtain when foraging at i flowers. This is obtained by substitut-
ing, in Equation 4, Iij for the amount of nectar that a j bee
would be able to collect from an i flower full with nectar. Type
i flowers will remain unvisited if, when all bees concentrate on
the other flower type, i#, a hypothetical individual exploiting i
flowers obtained a lower payoff than its cospecific. That is, if

kij êij

11 kij hij
,

ki#j ei#j

11 ki#j hi#j
; ð8Þ

where ei#j is evaluated at pi#X ¼ pi#Y ¼ 1. Any factor that de-
creases the left-hand side of Equation 8 will favor the exis-
tence of an unused flower type, including low abundance or
detectability (low kij), large handling time (hij), low capacity
for holding nectar (qici), or high extraction cost ðkp

ijÞ: Reduced
competition (fewer nectarivores) will tend to increase the
right-hand side of Equation 8 (through its effect on ei#j),

Table 1

List of symbols used

Fi Number of i flowers (i ¼ 1 for shallow, i ¼ 2 for
deep flowers)

Bj Number of j bees (j ¼ X for short-tongued, j ¼ Y for
long-tongued bees)

ri Nectar secretion rate
ci Corolla depth
tj Tongue length
qi Energy contents per unit length of nectar column
Iij Expected amount of nectar consumed by j bee at i flower
mij Rate at which i flowers are visited by j bees
kij Rate at which j bees find i flowers
Eij Expected payoff of j bees at i flowers (patch model)
qij Probability that a j bee exploits an i flower on encounter

(prey model)
k

f
j Metabolic rate while flying

k
p
ij Metabolic rate while probing flowers for nectar
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leaving its left-hand side unaltered (because êij is independent
of the number of nectarivores), and will also favor the exis-
tence of unused flowers.

When both flower types are used, there is resource parti-
tioning: at least one flower type is exploited only by one bee
species (Possingham 1992).

Correlation between tongue length and corolla depth

Short- and long-tongued bees harvest the same nectar vol-
umes at shallow flowers, whereas long-tongued bees obtain
more nectar than short-tongued bees from deep flowers. In
general, therefore, long-tongued bees will be relatively more
efficient than short-tongued bees at exploiting deep flowers,
and when both flower types are exploited, short-tongued bees
should exploit shallow flowers and long-tongued bees should
exploit deep flowers. However, the correlation between
tongue length and corolla depth need not be perfect, depend-
ing on the relative abundance of the 2 flower types and the
2 bee species; short-tongued bees may also exploit deep flow-
ers, or long-tongued bees may also exploit shallow flowers. In
addition, the profitability of a flower type depends on a num-
ber of parameters that might alter the relative efficiency of the
2 bee species.

From Equations 4 and 7 (in particular, because Eij is an
increasing function of Iij and kij and a decreasing function
of hij and k

p
ij ), it is easy to see that for the 2 isolines to intersect,

at least one of the following 3 conditions must be satisfied:
(1) k1Y � k2Y . k1X � k2X, (2) h1Y � h2Y , h1X � h2X, or
(3) k

p
1Y � k

p
2Y,k

p
1X � k

p
2X : These conditions imply that, relative

to short-tongued bees, long-tongued bees are more efficient at
detecting and exploiting shallow than deep flowers. Equations
4 and 7 also imply that the vertical intercept of the Y isoline
increases when k1Y � k2Y increases, when h1Y � h2Y decreases,
and when k

p
1Y � k

p
2Y decreases. From these two results, it fol-

lows that, if k1Y � k2Y � k1X � k2X, h1Y � h2Y � h1X � h2X,
and k

p
1Y � k

p
2Y � k

p
1X � k

p
2X ; the Y isoline is completely under

the X isoline. (This is a sufficient, not a necessary condition.)
When the Y isoline is below the X isoline, long-tongued bees
are preferentially associated with deep flowers: all long-
tongued bees forage at deep flowers and/or all short-tongued
bees forage at shallow flowers.

Figure 1 shows how asymmetries in the handling time and/
or the metabolic costs associated with nectar extraction might
swap the sign of the correlation between tongue length and
corolla depth. As the metabolic cost of long-tongued bees for-
aging at deep flowers increases (all other parameters remain
fixed), the system shifts from an equilibrium where short-
tongued bees forage at shallow flowers and long-tongued bees
at deep flowers to a region where there is resource partition-
ing, but where 2 equilibria are possible, to a region where all
short-tongued bees forage at deep flowers and long-tongued
bees use both flower types, eventually reaching a point with
total (and reversed) habitat segregation, with long-tongued
bees foraging at shallow flowers and short-tongued bees for-
aging at deep flowers.

FLOWERS WITH RANDOM DISTRIBUTION
(PREY MODEL)

In this situation, nectarivores search their environment for
individual plants rather than clumps of a favored species. En-
counters with shallow and deep flowers follow 2 independent
Poisson processes, and kij is the rate at which a j visitor en-
counters i flowers. (Notice that kij has slightly different mean-
ing in the 2 models.) On encounter with an i flower, bees must
decide whether to exploit it or to continue searching for an-
other flower. If the probability that a j bee exploits an i flower

on encounter is qij (the condition q1j 1 q2j ¼ 1 need not, and
generally will not, apply), then the problem involves finding
the values of qij that maximize the expected net energy intake
rate (or similar currency) of X and Y visitors.

The expected net energy intake rate of a j individual accept-
ing i flowers with probability qij is (Stephens and Krebs 1986)

Ej ¼
P

i qijkij eij

11
P

i# qi#jki#j hi#j
� k

f
j ; ð9Þ

and the rate at which i flowers are visited by j nectarivores is

mij ¼
Bjkij qij

Fið11 k1j q1j h1j 1 k2j q2j h2jÞ
: ð10Þ

A standard result of the basic prey model is that a given prey
type should be always accepted or always rejected on encoun-
ter. That is, at the optimal strategy, qij 2 f0, 1g for all i and j,
the so-called ‘‘zero–one rule’’ (Stephens and Krebs 1986). Es-
sentially, a prey should be accepted if its profitability exceeds
the payoff that the forager can expect to obtain by excluding
this prey type from its diet and rejected otherwise. What hap-
pens when the profitability of a prey type is exactly the same as
the payoff that the forager can expect to obtain by excluding
it from the diet? In this case, the forager obtains the same
payoff regardless of the proportion of prey of this type it con-
sumes on encounter. The optimal strategy is therefore un-
determined and the zero–one rule breaks down. When the
profitability of prey is independent of the foraging strategy
of predators, only a coincidence can make the profitability
of a prey type exactly equal the expected payoff obtained by
excluding this prey type from the diet. The probability that
this happens when parameter values are chosen at random is
zero, and this possibility is therefore regarded as a mathemat-
ical curiosity (a so-called ‘‘degenerate’’ scenario), with no
biological relevance.

This is not the case when the foraging strategy of predators
determines the profitability of prey: what in the standard prey
model was a mere ‘‘pathology’’ may now become an equilibrium

Figure 1
Isoline for short-tongued visitors (solid line) and isolines for long-
tongued visitors (dashed lines) for a system with 100,000 flowers of
each type and 100 bees of each species. Parameter values are as
follows: c1 ¼ 5 mm, c2 ¼ 20 mm, tX ¼ 10 mm, tY ¼ 15 mm, ri ¼ 0.01
mm s�1, kij ¼ 0.1 s�1, and hij ¼ 0.1 s. Metabolic costs satisfy the
condition k

p
ij � k

f
j ¼ 0:01 energy equivalents of a millimeter of nec-

tar column per second, for all flower types and bee species except
for the long-tongued bees foraging at deep flowers. For this com-
bination, k

p
2Y � k

f
Y ¼ j2Y : Each dashed line corresponds to a differ-

ent value of j2Y. From bottom to top, j2Y ¼ 0.01, 30, 40, 60, and 80.
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condition. The model may have an internal solution, if there
is at least one qij with 0 , qij , 1, or an external solution if the
zero–one rule is satisfied. To find the optimal foraging strat-
egy, we first check whether the model has an external solu-
tion. An external solution is a set H ¼ fq1X, q1Y, q2X, q2Yg, with
qij 2 f0, 1g for all i and j, such that: (1) if qij ¼ 0, then the
profitability of i flowers to j bees is lower than the expected
payoff of j bees, both of them calculated at H; and (2) if qij ¼
1, then the expected payoff of j bees exceeds the payoff that
a hypothetical j bee would obtain if it did not visit j flowers
(which is calculated setting qij ¼ 0 in Equation 9, leaving the eij

unaltered). There are 16 possible external solutions, but most
of them can be automatically discarded because the most
profitable flower type must always be included in the diet
(Stephens and Krebs 1986).

If the model has no external solution, then the zero–one
rule is broken. This can happen because the profitability of
a flower type decreases with the frequency with which that
flower type is visited. Visiting a flower type may be unprofit-
able when it is heavily exploited, but if the same flower type is
systematically avoided, nectar may accumulate in its corolla
until its exploitation becomes worthwhile.

Solution types

Given that q1j 1 q2j ¼ 1 need not hold, we must work with
4 independent variables. This makes it impractical to use the
isoline method described above. Instead, one can find the
solution as the equilibrium of a system of differential equa-
tions. This is tantamount to assuming that the probabilities
of visiting flowers on encounter change through time (t) in
the direction that increases intake rate (Mesterton-Gibbons
1992). An ecological equilibrium is a set H where no individ-
ual bee can increase its intake rate by modifying the values of
qij. Given that a system is in state H ¼ fq1X, q1Y, q2X, q2Yg, we can
define Dij as

Dij ¼
eij

hij
�

P
i# 6¼i qi#jki#j ei#j

11
P

i$6¼i qi$jki$j hi$j
: ð11Þ

The optimal foraging equilibrium is the equilibrium point of
the system of differential equations:

dqij

dt
¼ aDijðq1X ; q1Y ; q2X ; q2Y Þ; ð12Þ

with a . 0 and subject to 0 � qij � 1. This set of differential
equations can be solved numerically.

There is no simple relationship between the parameters of
the model and the equilibrium values of the qij, and many
combinations can be obtained by introducing asymmetries
in metabolic costs (as in Figure 1). Typically, when competi-
tion is scarce, all bees exploit every flower they encounter. As
competition increases, either the long-tongued bees start
avoiding shallow flowers or the short-tongued bees start avoid-
ing deep flowers (possibly both). There is a set of conditions
for which bees exploit the nonpreferred flowers with finite
probability (0 , q1Y , 1 or 0 , q2X , 1), but when competi-
tion for resources is sufficiently high, the nonpreferred flow-
ers are totally avoided (q1Y ¼ 0 or q2X ¼ 0). Figure 2 shows 2
examples of the relationship between the ecological equilib-
rium and the density of bees. Increased metabolic cost of
flying shifts curves C and D to the right.

DISCUSSION

Differences in the ability of 2 nectarivore species to exploit
the nectar of 2 co-occurring flower types will lead to resource

partitioning, in the sense that at least one nectarivore will
refrain from exploiting one flower type. This result was orig-
inally derived by Possingham (1992) and generalized by
Rodrı́guez-Gironés (2006) when nectarivores differ in the du-
ration of flower visits. The models that we have developed
here extend these findings in 2 directions: flower visitors dif-
fer in the amount of nectar they can collect from flowers, not
in the time they require to exploit them, and foragers may
have to decide whether to exploit flowers on encounter.

When foragers choose a patch type to search for food and
encounter a single type of flower within that patch, the predic-
tions of the model are essentially the same as those of
Possingham (1992): at least one nectarivore will specialize on
a single flower type, whereas the other nectarivore may act as
a specialist or a generalist, depending on the conditions of the

Figure 2
Relationship between the abundance of nectarivores and the
ecological equilibrium type. Both panels represent communities
with 2,500 deep and shallow flowers, with c1 ¼ 5 mm, c2 ¼ 20 mm,
tX ¼ 10 mm, tY ¼ 15 mm, kij ¼ 0.05 s�1, and hij ¼ 0.5 s. Metabolic
costs (in energy equivalents of a millimeter of nectar column per
second) are k

f
j ¼ 0 and k

p
ij ¼ 0.1 for all flower types and nectarivore

species. The 2 scenarios differ in the rate at which nectar is secreted
by flowers, with (a) ri ¼ 0.001 mm s�1 and (b) ri ¼ 0.0001 mm s�1.
Short-tongued bees visit all flowers below line B, and completely
avoid deep flowers above line A. In between, they exploit some, but
not all the deep flowers they encounter (0 , q2X , 1). Long-
tongued bees exploit all flowers to the left of line D, only deep
flowers to the right of line C, and in between these lines they
exploit some, but not all, of the shallow flowers they encounter
(0 , q1Y , 1).
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model. Under most conditions, long-tongued bees exploit deep
flowers and short-tongued bees shallow flowers (regardless of
which bee species, if any, exploits both flower types), but this
correlation need not always hold, and it can be reversed by
introducing asymmetries in the exploitation costs (Figure 1).

When flowers are encountered at random, there need not
be resource partitioning. In particular, if competition for nec-
tar is scarce, long- and short-tongued bees forage indiscrimi-
nately at shallow and deep flowers. As competition increases,
short-tongued bees start avoiding deep flowers and long-
tongued bees shallow flowers, avoidance being complete
when competition is sufficiently high. As in the previous case,
it is in principle possible to swap the correlation between
tongue length and the corolla depth of the preferred flowers
by introducing asymmetries in metabolic costs, but for most
realistic parameter values, long-tongued bees will prefer deep
flowers and short-tongued bees shallow flowers.

Because our results are based on conservative assumptions
concerning the pattern of nectar secretion and the relation-
ship between tongue length and handling time at deep flow-
ers, resource partitioning should be more prevalent than the
model predicts. In some colonial species, such as honeybees,
Apis mellifera, and bumblebees, Bombus spp., individual for-
agers tend to specialize on a single flower type (Heinrich
1976b). Although the reasons for this specialization lie be-
yond the scope of this paper (but see Darwin 1876; Laverty
1980; Lewis 1986), specialization implies that individuals are
searching for particular flower types. When this is the case, the
patch model should apply regardless of the spatial distribu-
tion of flowers. Once again, this factor should increase the
prevalence of resource partitioning.

Short-tongued bees will stop visiting deep flowers as soon as
long-tongued bees keep the nectar column of most flowers
beyond their reach. On the other hand, long-tongued bees
will always encounter some nectar in shallow flowers, no mat-
ter how many short-tongued bees are there, and therefore,
competition must be intense before long-tongued bees spe-
cialize on deep flowers. In general, although a long tongue
can be seen as an evolutionary specialization, at the ecological
level, long-tongued bees will normally behave as generalists,
whereas the short-tongued bees behave as specialist foragers
(Harder 1985; Graham and Jones 1996; Borrell 2005; Stang
et al. 2006). In flowers, however, evolutionary and ecological
specialization go hand in hand because deep flowers are vis-
ited by fewer pollinator species.

It is normally assumed that deep corolla tubes evolved
because plants that ‘‘compelled the moths to insert their pro-
bosces up to the very base, would be best fertilised’’ (Darwin
1862, p. 202). Although this hypothesis has received consider-
able empirical support (Nilsson 1988; Johnson and Steiner
1997; Alexandersson and Johnson 2002), there are reasons
to doubt the universality of this mechanism: flowers with lon-
ger corolla tubes are not always better at exporting or receiv-
ing pollen than flowers with shorter corolla tubes (Herrera
1993; Lindberg and Olesen 2001; Lasso and Naranjo 2003).
Our results suggest an alternative explanation that corolla
elongation may be favored because it deters floral parasites
from visiting flowers (Rodrı́guez-Gironés and Santamarı́a
2005).

APPENDIX

Calculating the expected amount of nectar encountered by
a j individual at i flowers, Iij

Arrival times of X and Y visitors are independent and expo-
nentially distributed, so if we select an i flower at random, the

probability that the time since the departure of the last
X visitor is between sX and sX 1 dsX, and the time since
the departure of the last Y visitor is between sY and sY 1 dsY

is

PðsX ; sY Þ ¼ mFX mFY e�mFX sX e�mFY sY dsX dsY : ðA1Þ

Let nij(sX, sX) be the amount of nectar within reach of
a j visitor at an i flower, given that the time since the de-
parture of the last X visitor was sX and the time since the
departure of the last Y visitor was sY. The amount of nectar
that a j individual can expect to encounter at i flowers, Iij,
is:

Iij ¼
ZZ

0�sx ;sy ,N

nijðsX ; sY ÞPðsX ; sY ÞdsX dsY : ðA2Þ

The nij(sX, sX) (measured as the depth of the nectar column
consumed) are calculated as follows.

Shallow (i ¼ 1) flowers
Both short- and long-tongued bees can reach the bottom of
the corolla tube; hence, every visitor depletes the nectar of
the flower, and the amount of nectar a visitor encounters is
the amount that has been produced since the last visit, or the
amount that the flower can hold if the time that the flower has
remained unvisited exceeds the time that the flower requires
to refill its corolla tube with nectar. Hence,

i1Z ðsX ; sY Þ ¼
sX r1; sX � sY ; sX , c1=r1;
sY r1; sY , sX ; sY , c1=r1;
c1; otherwise:

8<
: ðA3Þ

Deep (i ¼ 2) flowers, short-tongued (X) visitors
For this calculation, we must take into account the fact that
short-tongued bees can only consume nectar if the time since
the last long-tongued bee visited the flower exceeds (tY � tX)/
rB (this is the time required for the nectar column to rise from
tY, where it is left by long-tongued visitors, to tX, where short-
tongued bees first reach the nectar).

n2X ðsX ; sY Þ ¼

0; sY � ðtY � tX Þ=r2;
sY r2 � ðtY � tX Þ; 0, sY � ðtY � tX Þ=r2 � sX ;

sY � tY =r2;
sX r2; sX , sY � ðtY � tX Þ=r2;

sX � tX =r2;
tX ; otherwise:

8>>>>>><
>>>>>>:

ðA4Þ

Deep (i ¼ 2) flowers, long-tongued (Y) visitors
The calculation is done as before, leading to

n2Y ðsX ; sY Þ ¼

sY r2; sY � ðtY � tX Þ=r2 � sX ;
sY � tY =r2;

ðtY � tX Þ1 sX r2; sX , sY � ðtY � tX Þ=r2;
sX � tX =r2;

tY ; otherwise:

8>>>><
>>>>:

ðA5Þ

Substituting Equations A3–A5 into A2 and integrating leads to
Equations 1–3.
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